

Die schwierige Beurteilung von Cyber-Security-Fällen - Hackerangriff oder Fehlkonfiguration?

Messekongress Schadenmanagement 29. März 2017 in Leipzig

Dr. Frank Stummer I Geschäftsführer Digital Forensics GmbH

KOMMUNIKATIONSTECHNOLOGIEN IN DER INDUSTRIE

Mechanisierung **Automatisierung** Dampfmaschine Computer Webstuhl Roboter • Treibriemenanlage Sensoren 2010 Wenige Serielle Ethernet 2 3 Viele Dokumente Komm. Dokumente Industrie 4.0 Massenproduktion Fließband • Cyber-Physikalische • Elekrizität Systeme • Verkehrsmöglichkeiten • Internet of Things Internet of Services

VORTEILE UND HERAUSFORDERUNGEN DER INDUSTRIE 4.0

Industrie 4.0

- Cyber-Physikalische Systeme
- Internet of Things
- Internet of Services

Höhere Flexibilität und Effizienz der industriellen Produktion durch:

- vollständig vernetzte Industriesteuerungen,
- ermöglicht durch die Verschmelzung mit den IT-Systemen,
- basierend auf der Internet-Technologie (Ethernet & TCP/IP).

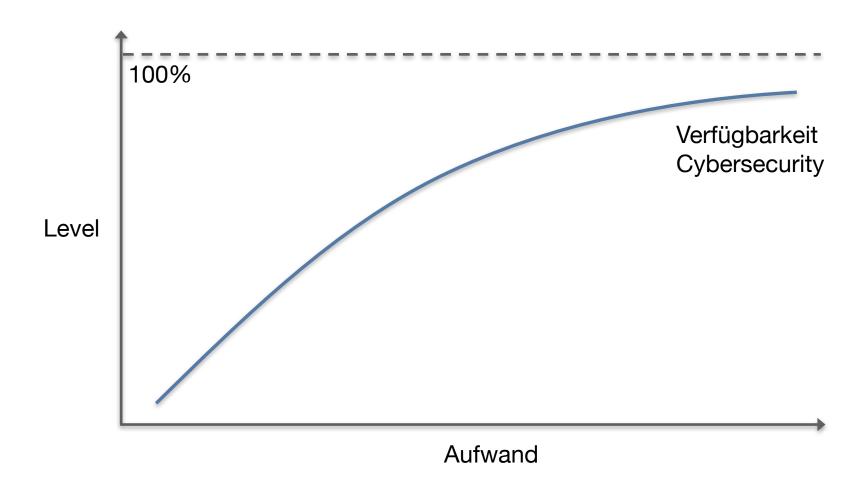
Mit einigen neuen Herausforderungen:

- höhere Komplexität, geringere Sichtbarkeit,
- mehr Fehlerquellen,
- neue und mehr Sicherheitsbedrohungen.

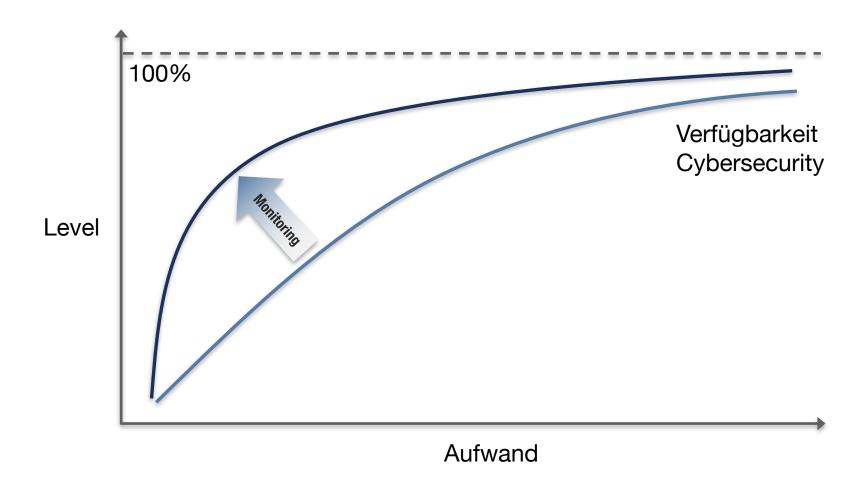
DIE ZIELE DER OT UND DER IT VEREINHEITLICHEN SICH

Produktion/ OT:

- Funktionale Sicherheit
- 2. Verfügbarkeit
- 3. Integrität
- Sicherheit vor Angriffen


IT Systeme:

- Sicherheit vor Angriffen
- 2. Datenschutz
- 3. Integrität
- 4. Verfügbarkeit



VERFÜGBARKEIT UND SICHERHEIT SIND ZWEI SEITEN DERSELBEN MEDAILLE

MONITORING DES NETZWERKVERKEHRS ERMÖGLICHT HÖHERE VERFÜGBARKEIT UND SICHERHEIT

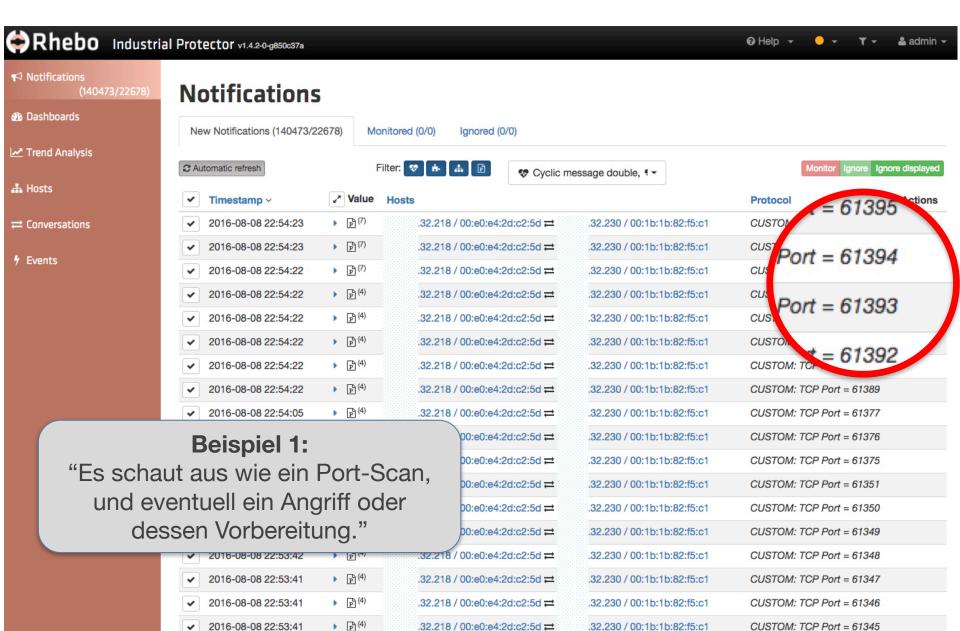
DEFENSE IN DEPTH – SYSTEMATIK DER MASSNAHMEN ZUR SICHERING VON VERFÜGBARKEIT UND SICHERHEIT

Monitoring und Detektion

(Anomalieerkennung,

Echtzeitlagebild, Protokollierung, Aufzeichnung, Archivierung)

Prävention und Organisation


(Risikomanagementsysteme, Standards (z.B. IEC 62443), Protokolle, Fernwartung, Segmentierung, DMZ, Firewall, Komponentenhärtung, Trainings)

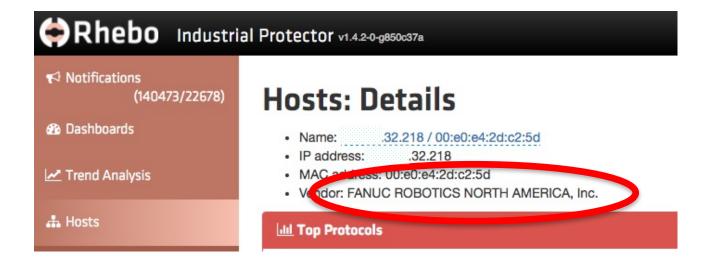
Reaktion

(Anlagensteuerung, Leitstand, Kontrollzentrum, CERT/CSIRT)

Aufklärung (Threat Intelligence)

(**Forensik**, Verfolgung, Maßnahmen in Prävention, Monitoring und Reaktion)

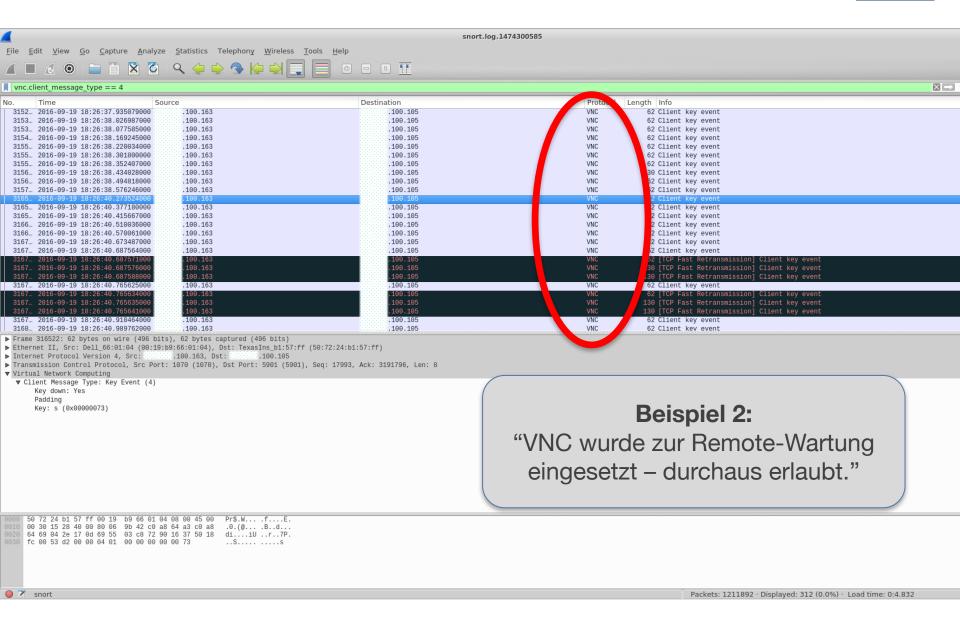
.32.230 / 00:1b:1b:82:f5:c1


P (4)

2016-08-08 22:53:41

Administration

CUSTOM: TCP Port = 61344



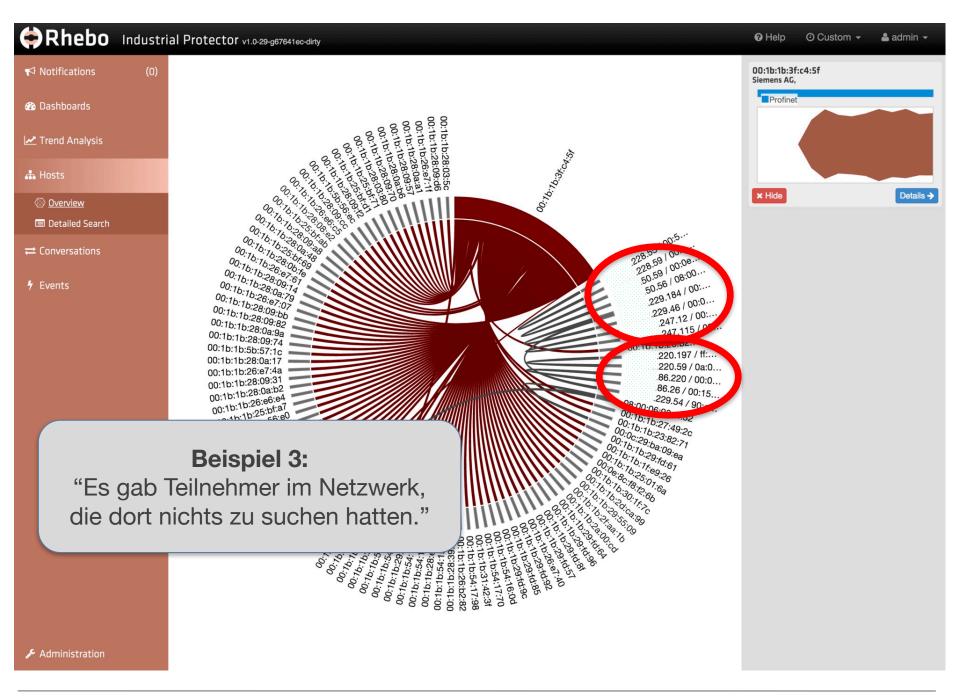
Beispiel 1:

"Es war aber die regelkonforme Steuerkommunikation eines eingesetzten Roboters."

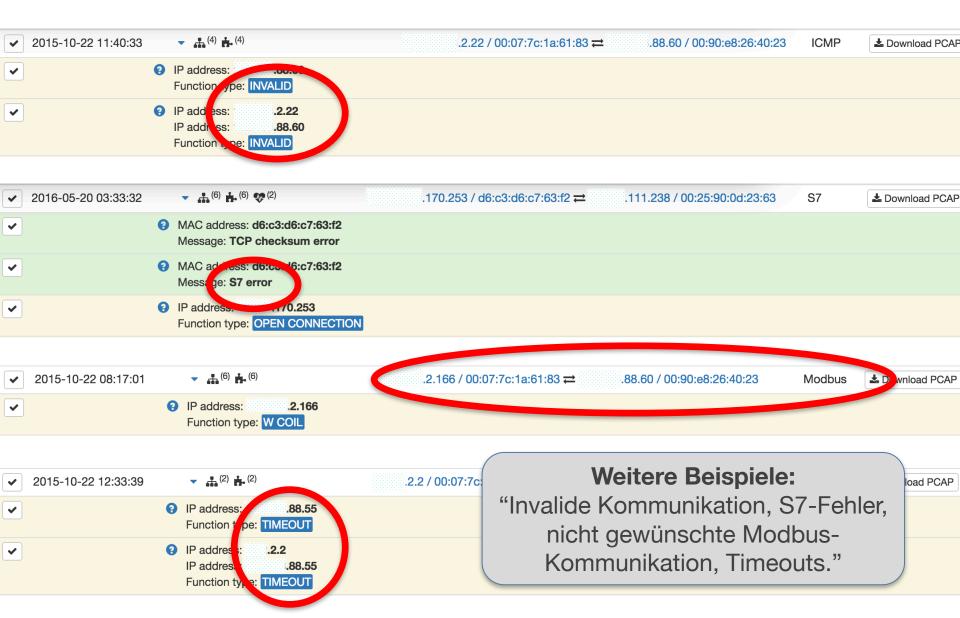

```
3167... 2016-09-19 18:26:40.765641000
                                               100.163
                                                                                                      100.105
 3167... 2016-09-19 18:26:40.910464000
                                               .100.163
                                                                                                     .100.105
 3168... 2016-09-19 18:26:40.989762000
                                               .100.163
                                                                                                     .100.105
▶ Frame 316522: 62 bytes on wire (496 bits), 62 bytes captured (496 bits)
▶ Ethernet II, Src: Dell_66:01:04 (50.19:09:00.51:04), Dst: TexasIns_b1:57:ff (50:72:24:b1:57:ff)
▶ Internet Protocol Version 4, Src:
                                            .100.163, Dst:
                                                                   .100.105
▶ Transmission Control Protocol, 3:s Port: 1070 (1570), Dst Port: 5901 (5901), Seq: 17993, Ack: 3191796, Len: 8
▼ Virtual Network Computing
  ▼ Client Hessage Typ.: Key Event (4)
       Key down: Yes
       Padding
       Key: s (0x00000073)
```

Beispiel 2:

"Es war jedoch ein Sabotage-Angriff eines Innentäters."


```
parse vnc(raw payload):
                                                  decoded = binascii.hexlify(raw payload).decode('latin-1')
                                                  if len(decoded) == 16 and decoded[1] == '4' and decoded[3] == '0':
                                                               if decoded[-4:] in VNC CODES:
import binascii
                                                                     key stroke = VNC CODES[decoded[-4:]]
from scapy.all import sniff, TCP, Raw
                                                                     print(' {0}'.format(key stroke))
VNC_CODES = {
                                                               else:
                                                                     key stroke = binascii.unhexlify(decoded[-8:]).decode('utf-8')[-1]
                                                                     print(key stroke, end='', flush=True)
                                                         except UnicodeDecodeError:
                                                               print('\\n')
PORT_RANGE_TCP = list(range(5901, 5999))
PORT_RANGE_HTTP = list(range(5801, 5899))
                                      def callback(rawPacket):
def parse vnc(raw payload):
      decoded = binascii.hexlify(raw payload).decode('latin-1')
      if len(decoded) == 16 and decoded[1] == '4' and decoded[3] == '0':
             if decoded[-4:] in VNC_CODES:
                key_stroke = VNC_CODES[decoded[-4:]]
                 key_stroke = binascii.unhexlify(decoded[-8:]).decode('utf-8')[-1]
                print(key stroke, end='', flush=True)
          except UnicodeDecodeError:
    print('--=')
def callback(rawPacket):
   if rawPacket.haslayer(TCP):
      srcPort = rawPacket.getlayer(TCP).sport
dstPort = rawPacket.getlayer(TCP).dport
      if (srcPort in PORT_RANGE_TCP
             or dstPort in PORT RANGE TCP):
          if rawPacket.haslayer(Raw):
             parse_vnc(rawPacket.getlayer(Raw).load)
sniff(offline=sys.argv[1], store=0, prn=callback)
```

Beispiel 2:


... der nachweislich (hier ein Skript zur Analyse) ..."


```
xample vnc decoding.py <u>traces/snort.log.1474300585</u>
qυ
Up
Return/Enter
Return/Enter
ccccccccccccccccccc---
ppppppp---
ppppppppppppp---
     aauuxx
                                                             Beispiel 2:
                                                 "... gezielt und konzertiert Geräte
                                                       heruntergefahren hat."
 ggrreepp uussttaarrtt Return/Enter
Return/Enter
pppppppp---
sshhuuttddoowwnn --hh
                         nooww Return/Enter
Return/Enter
```


BESTEN DANK FÜR IHRE AUFMERKSAMKEIT

Dr. Frank Stummer

Telefon: +49 176 310 461 45

frank.stummer@digitalforensics.de

www.digitalforensics.de

EGAL WIE GROSS DER HEUHAUFEN IST - WIR FINDEN DIE NADEL DARIN. EFFIZIENT. SCHNELL. BEWEISSICHER.

